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Introduction

The use of the various statistical criteria for distinguishing
between a centrosymmetric and a non-centrosymmetric
structure depends on the basic difference in the nature
of the intensity distribution for the two cases as was
first shown by Wilson (1949). While a comparison of
the experimental data with the theoretical distributions
such as the N(z) function of Howells, Phillips & Rogers
(1950) or the P(y) curves of Ramachandran & Srinivasan
(1959) would constitute, in essence, a complete test,
other statistical criteria have also been suggested as
simple and rapid tests for this purpose. They are, the
ratio ¢ = {|F|»*/{|F|*), and the variance of the normalized
intensity, v(z) = ((z —{(z))?) (Wilson, 1951).

In the course of another investigation it was noticed
by the authors that the values of the high-order absolute
moments of z are strikingly different for the two types
of distribution. One could therefore expect that these
would afford us good statistical criteria for distinguishing
between the two cases. The values of these high-order
moments can be easily obtained from earlier work (e.g.
Karle & Hauptman, 1953; Rogers & Wilson, 1953).
However, they will be deduced independently in the
following section in a very simple way making use of &
simplified description of the centrosymmetric and non-
centrosymmetric distributions. The possibility of this
simplification, which does not seem to have been noticed
earlier in the literature, arises from the use of a class of
distributions known as the gamma distributions. As
will be shown below, it enables us to study with advantage
the various properties associated with these distributions.
In the last section the results of the tests on the high-
order moments will be discussed.

A simplified description of the centrosymmetric
and the non-centrosymmetric distributions

A gamma distribution is characterized by the probability
density function (e.g. Weatherburn, 1961)

p(x) =e 7zt I'(l) (1)

where the range of variable is 0 to co, and I(l) is the
well known gamma function
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When a variable z is distributed according to (1) we
call it a ‘gamma variable’ with parameter I, or sym-
bolically describe it as a y(I) variable.
The distribution function for the normalized intensity,
z, in the case of a non-centrosymmetric structure, is
given by
P(z)dz=e%dz . (3)

A comparison of (3) with (1) shows that z has a y(1)
distribution. On the other hand, for the centrosymmetric

cage, if we take the variable as 2’ =z/2, we see that, since
P(2)dz = (2n2)~% exp [ —2/2]dz , 4)

P(z") is given by
P(z)dz’ =2~} (e[ m)dz’ (5)

and therefore 2z’ is a y(}) variable.

The advantage of this simplification is that several
properties connected with the two distributions can be
discussed quite simply from the general results applicable
to any y(I) variable. Some of these are given below without,
proof as they are readily available (Weatherburn, 1961).

The expectation value of a y(I) variable is given
by I while the rth absolute moment is given by
(I+1)...(l+r—1). The second moment hence equals
{(I+1), so that the variance becomes I(l+1)—12=I.
It can also be shown that the expectation value of the
positive square root is I'(l+3)/I'(l). Another parameter
commonly used in statistics is the kurtosis which is the
ratio of the fourth moment about the mean to the
square of the variance. For a y(l) variable this takes the
value (6/l) +3. These are listed in Table 1.

Table 1. Statistical parameters of a y(l) variable

Parameter Value
rth moment: (a7 W+1)...0+r=1)
Variance: {(x—Z)%) l
V=l I'(t+3)/I'(Q)
Kurtosis: {x—Z))/[v(z)]? (6/1)+3

We can write down immediately the values of the
various parameters for the centrosymmetric and the
non-centrosymmetric cases remembering, however, that
the variable involved for the former case is 2’ =z/2.
The conversion factor can be easily taken into account.
The values are listed in Table 2 and may be found to
agree with those available in the literature (Karle &
Hauptman, 1953).

Table 2. Statistical parameters connected with the
normalized intensity, z, for centrosymmetric and non-
centrosymmetric cases derived by Table 1

Non-
Parameter centrosymmetric Centrosymmetric

r=1 1 1
2 2 3
[CH) 3 6 15
4 24 105
5 120 945
v(z) 1 2

QED YTy =0} Va2 v(2[m)
{(z=2)*)/[v(z) 9 15
{(z—%)%) 9 60

It is also possible to discuss the nature of a y(I) distri-
bution in terms of I. Thus for instance it can be shown
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that the distribution is asymptotic to the x axis for
all values of /, and when [ >1 it has a mode at x=I{—1.
If 1>2, it also touches the = axis at the origin while if
1<l<2, it is tangential to the y axis at that point and
if 0<l<1, the curve is asymptotic to both the axes
and so on.

There are also certain other general results concerning
the gamma distributions which are of interest in the
present context. For instance, it can be proved quite
generally that the sum of two independent gamma
variables with parameters I and m is itself a gamma
variable with parameter (I +m). That the intensity for
a non-centrosymmetric structure is a (1) variable can,
in fact, be deduced from the above result since it is the
sum of the squares of the real and imaginary parts
each of which (the square) is a p(}) variable.

Another result which also finds a useful application
concerns the distribution of the quotient of two in-
dependent gamma variables. Thus (Weatherburn, 1961,
p- 158) if  and y are two independent gamma variables
with parameters I and m, then the variable u =z/(x +y)
has a beta distribution of the first kind (denoted by
B.(l, m)) defined by

P(u) =ul=}(1 —w)m=1/B(l, m) (6)

while the quotient v =z/y has a beta distribution of the
second kind (8,(I, m)) defined by

P(v) =v171B(l, m)(1 +v)t+m (7

where B(l, m) is the well known beta function. The latter
result can be used to deduce the distribution of the
quotient of the intensities belonging to two independent
crystals. The use of this result will be discussed in detail
in another paper from this laboratory (Srinivasan,
Subramanian & Ramachandran, 1964).

Results and discussion

It may be seen from Table 2 that the difference between
the values of the absolute moments is practically in-
significant for the low orders while it increases very
rapidly as the order increases. Thus for » =4 the centric
case has a value of 105, which is more than four times
the value for the non-centric case, namely 24. One could
therefore expect they would afford us better criteria
compared with the earlier ones, namely o and v(z2),
which involve at the most of the second moment.

However, the one possible limit that exists in practice
is that any errors in the values of z would become in-
creasingly important for larger value of » and for this
reason it would be advisable not to try too high a value
of r. It looks as if r =3 or 4 would be suitable. One could
probably try also the fourth moment about the mean
for which the difference between the two cases is par-
ticularly marked. However, we tried only {2?) and the
results are shown in Table 3. The usual precautions as
are applicable to statistical tests were observed while
carrying out the calculations.

It can be seen from Table 3 that the test has revealed
clearly, in each case, whether the projection is centro-
symmetric or not. The only case where the result was
ambiguous was for the b projection of the compound P,S,.

Table 3. Observed values of (z*)

Space Non-
Crystal group Centric centric
Theoretical value 105 24
3,3’-Dichloro-4,4’-dihydroxy-
diphenylmethane C2/c 98 (ROl) —
(Whittaker, 1953)
E*’(};ehdiflii‘:;ﬁg; " } P2, 98 (hOl) 21 (hkO)
""gi‘:‘jgfsc”sfgéllv‘)["(}e“hin & } P2, 144 (ROI) 19 (REO)
5-Methoxy-2-nitrophenol
(Bartindale et al., 1959) } P22, 108 (h0)  —
-T ine HCl
- (g:i(:lsil\l'la?san, 1959) } P2y 83 (RO} 21 (hkO)
Pag‘sli‘(;l;zﬁgliﬂl;gg)& } P2, 54 (hOl) 20 (Okl)

We also calculated for this particular case some of the
other parameters to see their agreement with the theoret-
ical values. The values obtained were: (23) =11, {22} =
27, v(z)=1-6 and ¢=0-63. Thus if we take all these
results into account, there is a strong overall indication
that the projection is centrosymmetric. The discrepancy
observed in the fourth moment is therefore probably
due to statistical errors.

Thus it seems that the high-order moments can also
be used in practice as statistical criteria. However, it
might be mentioned that since the statistical parameters
are always subject to errors it would be better to test
a number of parameters instead of just one or two.
This is likely to eliminate any possible errors.

We wish to thank Prof. G. N. Ramachandran for his
keen interest in this work.
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